822. Unique Morse Code Words
Array Hash Table String
Problem - Unique Morse Code Words
Easy
International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows:
'a'maps to".-",'b'maps to"-...",'c'maps to"-.-.", and so on.
For convenience, the full table for the 26 letters of the English alphabet is given below:
[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]
Given an array of strings words where each word can be written as a concatenation of the Morse code of each letter.
- For example,
"cab"can be written as"-.-..--...", which is the concatenation of"-.-.",".-", and"-...". We will call such a concatenation the transformation of a word.
Return the number of different transformations among all words we have.
Example 1:
Input: words = ["gin","zen","gig","msg"] Output: 2 Explanation: The transformation of each word is: "gin" -> "--...-." "zen" -> "--...-." "gig" -> "--...--." "msg" -> "--...--." There are 2 different transformations: "--...-." and "--...--.".
Example 2:
Input: words = ["a"] Output: 1
Constraints:
1 <= words.length <= 1001 <= words[i].length <= 12words[i]consists of lowercase English letters.
Solutions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | |
Submission Stats:
- Runtime: 0 ms (100.00%)
- Memory: 17.8 MB (37.15%)