464. Can I Win
Math Dynamic Programming Bit Manipulation Memoization Game Theory Bitmask
Problem - Can I Win
Medium
In the "100 game" two players take turns adding, to a running total, any integer from 1
to 10
. The player who first causes the running total to reach or exceed 100 wins.
What if we change the game so that players cannot re-use integers?
For example, two players might take turns drawing from a common pool of numbers from 1 to 15 without replacement until they reach a total >= 100.
Given two integers maxChoosableInteger
and desiredTotal
, return true
if the first player to move can force a win, otherwise, return false
. Assume both players play optimally.
Example 1:
Input: maxChoosableInteger = 10, desiredTotal = 11 Output: false Explanation: No matter which integer the first player choose, the first player will lose. The first player can choose an integer from 1 up to 10. If the first player choose 1, the second player can only choose integers from 2 up to 10. The second player will win by choosing 10 and get a total = 11, which is >= desiredTotal. Same with other integers chosen by the first player, the second player will always win.
Example 2:
Input: maxChoosableInteger = 10, desiredTotal = 0 Output: true
Example 3:
Input: maxChoosableInteger = 10, desiredTotal = 1 Output: true
Constraints:
1 <= maxChoosableInteger <= 20
0 <= desiredTotal <= 300
Solutions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
Submission Stats:
- Runtime: 1893 ms (61.29%)
- Memory: 198.4 MB (40.13%)